in each case was prepared from equal volumes of absolute ethanol and either distilled water or 4N sulfuric acid. Immediately prior to use the samples of stilbene and 4-dimethylaminostilbene were purified by chromatography on alumina followed by recrystallization from ethanol thereby, ensuring that any traces of the cis isomers were removed.

DEPARTMENT OF ORGANIC CHEMISTRY UNIVERSITY OF ADELAIDE SOUTH AUSTRALIA, AUSTRALIA

Liquid Scintillators. XII. Absorption and Fluorescence Spectra of 2,5-Diaryl-1,3,4oxadiazoles¹

Donald G. Ott, Vernon N. Kerr, F. Newton Hayes, and Elizabeth Hansbury

Received November 6, 1959

The importance of spectral properties of scintillators has been outlined,^{2,3} at which time the ab-

sorption and emission spectra of a variety of arylsubstituted oxazoles were reported. Similar data have been obtained for another important class of liquid scintillator solutes, the 1,3,4-oxadizaoles. The synthesis⁴ of these compounds and evaluation as liquid scintillator solutes⁵ have been reported previously. Two new pyridyl derivatives are described in the Experimental.

The absorption and fluorescence data are presented in Table I; the mean wave length, $\bar{\lambda}$, is that wave length which bisects the area under the fluorescence spectrum.

The effect of an oxadiazole nucleus on the spectrum of an aromatic system is very similar to that of a *p*-phenylene group. *p*-Terphenyl (λ_{max} 280, ϵ 2.5 × 10⁴), *p*-quaterphenyl (λ_{max} 300, ϵ 3.9 × 10⁴), and *p*-quinquephenyl (λ_{max} 310, ϵ 6.3 × 10⁴)⁶ may be compared with the five analogous oxadiazoles having the equivalent number of rings.

Ar		Absorption				
	Ar'	- ε ×		Fluorescence		
		$\lambda_{\max}^{\text{abs}}$	10-4	$\lambda_{\max_1}^{fl}$	$\lambda_{\max_2}^{\mathrm{fi}}$	Ž
C_6H_5	$\mathrm{C}_6\mathrm{H}_5$	282	2.6	336	350	360
C_6H_5	$4-\mathrm{C_6H_5C_6H_4}$	300^{b}	4.5	364	380	388
$\mathrm{C_6H_5}$	$1-C_{10}H_{7}$	313	1.8	372	3 92	392
$\mathrm{C_{6}H_{5}}$	$2-C_{10}H_{7}$	310	2.7	364		380
C_6H_5	2-Furyl	292	3.3	364		372
C_6H_5	2-Thienyl	298	2.4	373		388
C_6H_5	3-Pyridyl	285	2.3	355		362
C_6H_5	4-Pyridyl	284	2.5	335	353	360
$p\text{-}\mathrm{CH_3OC_6H_4}$	4 - $C_6H_5C_6H_4$	308	4.0	372	390	394
p-CH ₃ OC ₆ H ₄	$1-C_{10}H_{7}$	317	2.3	380	396	402
p-CH ₃ OC ₆ H ₄	$2-C_{10}H_{7}$	308	3.2	366	382	386
p-CH ₃ C ₆ H ₄	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	289	3.1	342	354	366
p-CH ₃ OC ₆ H ₄	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	301	3.3	356	370	380
p-FC ₆ H ₄	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	283	2.4	335	350	358
p-ClC ₆ H ₄	$p ext{-}\mathrm{ClC}_6\mathrm{H}_4$	294	3.2	344	362	370
$p ext{-}\mathrm{BrC}_6\mathrm{H}_4$	$p ext{-}\mathrm{BrC}_5\mathrm{H}_4$	297	3.6	347	360	374
p-IC ₆ H ₄	$p ext{-}\mathrm{IC}_6\mathrm{H}_4$	303	3.7	344		382
4-C ₆ H ₅ C ₆ H ₄	$4-C_6H_5C_6H_4$	313^{b}	6.1	378	396	396
C ₆ H ₅ CH==CH	$C_6H_5CH=CH$	331	3.6	406	422	449
2-Furyl	2-Furyl	297	2.6	355	370	378
2-Thienyl	2-Thienyl	313	2.4	377	390	420
$1-C_{10}H_7$	$1-C_{10}H_7$	335	2.3	392	408	412
2-C ₁₀ H ₇	$2\text{-C}_{10}\text{H}_{7}$	332	3.3	370	388	388
5,5-Diphenyl-2,2'-bi- 1,3,4-oxadiazole		298^{b}	4.0	354	370	378
2,2'-p-Phenylenebis(5-phenyl- $1,3,4$ -oxadiazole)		315^{c}	4.8	373	390	392

^a Wave lengths are in mu; the solvent was cyclohexane for absorption and toluene for fluorescence unless otherwise indicated. ^b Solvent was 2% chloroform in cyclohexane. ^c Solvent was chloroform; a band at 325 mu, ϵ 4.8 \times 10⁴, is also present.

⁽¹⁾ Work performed under the auspices of the U. S. Atomic Energy Commission.

⁽²⁾ D. G. Ott, F. N. Hayes, E. Hansbury, and V. N. Kerr, J. Am. Chem. Soc., 79, 5448 (1957).

⁽³⁾ R. K. Swank, W. L. Buck, F. N. Hayes, and D. G. Ott, *Rev. Sci. Instr.*, **29**, 279 (1958).

⁽⁴⁾ F. N. Hayes, B. S. Rogers, and D. G. Ott, J. Am. Chem. Soc. 77, 1850 (1955)

<sup>Chem. Soc., 77, 1850 (1955).
(5) F. N. Hayes, D. G. Ott, and V. N. Kerr, Nucleonics, 13, No. 12, 38 (1955).</sup>

⁽⁶⁾ A. É. Gillam and D. H. Hey, J. Chem. Soc., 1939, 1170.

Fluorescence and absorption maxima of the oxadiazoles occur at shorter wave lengths than for the corresponding oxazoles. Substituent groups influence the maxima in essentially the same manner for both types of compounds, and thus the discussions presented previously regarding correlation of spectra with structure of the oxazoles² apply, qualitatively, to the 1,3,4-oxadiazoles.

EXPERIMENTAL⁷

The following compounds were prepared by the procedures given previously⁴:

1-Benzoyl-2-nicotinoylhydrazine, m.p. 234-234.5°, after recrystallization from ethanol.

Anal. Calcd. for $C_{13}H_{11}N_3O_2$: C, 64.72; H, 4.60. Found: C, 64.69; H, 4.56.

3-[5-Phenyl-2-(1,3,4-oxadiazolyl)] pyridine, m.p. 121.5-122°, white needles from toluene-ligroin.

Anal. Calcd. for C₁₈H₉N₃O: C, 69.94; H, 4.06; N, 18.83. Found: C, 70.03; H, 4.24; N, 18.38.

1-Benzoyl-2-isonicotinoylhydrazine, m.p. 232-233.5°, white needles from toluene.

Anal. Found for C₁₃H₁₁N₃O₂: C, 64.77; H, 4.80.

4-[5-Phenyl-2-(1,3,4-oxadiazolyl)]pyridine, m.p. 142-143°, white needles from toluene.

Anal. Found for C₁₃H₂N₃O: C, 70.16; H, 3.98; N, 18.82. Fluorescence and Absorption Spectra were obtained as described earlier.²

Acknowledgment. The authors are grateful for the technical assistance of Mrs. Ruth Lier.

BIOMEDICAL RESEARCH GROUP LOS ALAMOS SCIENTIFIC LABORATORY UNIVERSITY OF CALIFORNIA LOS ALAMOS, N. M.

⁽⁷⁾ Melting points are uncorrected. Microanalyses are by Micro-Tech Laboratories, Skokie, Illinois.